Respuesta :

The results for the matching between function and its period are:

  • Option 1 - Letter D
  • Option 2 - Letter A
  • Option 3 - Letter C
  • Option 4 - Letter B

What is a Period of a Function?

If a given function presents repetitions, you can define the period as the smallest part of this repetition. As an example of periodic functions, you have: sin(x) and cos(x).

[tex]\mathrm{Period\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\cos \left(x\right)}{|b|}[/tex]

[tex]\mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\sin \left(x\right)}{|b|}[/tex]

The period of sin(x) and cos(x) is .

For solving this question, you should analyze each option to find its period.

1) Option 1

[tex]\mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\cos \left(x\right)}{|b|}\\ \\ \mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{2\pi }{\frac{1}{2} }=4\pi[/tex]

Thus, the option 1 matches with the letter D.

2) Option 2

[tex]\mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\sin \left(x\right)}{|b|}\\ \\ \mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{2\pi}{4} =\frac{\pi }{2}[/tex]

Thus, the option 2 matches with the letter A.

3) Option 3

[tex]\mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\cos \left(x\right)}{|b|}\\ \\ \mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{2\pi}{2} =\pi[/tex]

Thus, the option 3 matches with the letter C.

4) Option 4

[tex]\mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\sin \left(x\right)}{|b|}\\ \\ \mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{2\pi}{8} =\frac{\pi }{4}[/tex]

Thus, the option 4 matches with the letter B.

Read more about the period of a trigonometric function here:

https://brainly.com/question/9718162

#SPJ1