Answer:
58.1 cm
Step-by-step explanation:
The length of each support rod can be found using the Pythagorean theorem. The geometry can be modeled by a right triangle, such that the distance from centre is one leg and half the length of the rod is the other leg of a triangle with hypotenuse equal to the radius of the grill.
__
The theorem tells us that the sum of the squares of the legs of a right triangle is the square of the hypotenuse. For legs a, b and hypotenuse c, this is ...
c² = a² +b²
For the geometry of the grill, we can define a=7.5 and c=30. Then b will be half the length of the support rod.
30² = 7.5 +b²
b² = 900 -56.25 = 843.75
b = √843.75 ≈ 29.0473
The length of each support rod is twice this value, so ...
rod length = 2b = 2(29.0473) = 58.0947
Each support rod is about 58.1 cm long.