Lines AB and CD are parallel. The coordinates of point A are (-2,5), the coordinates of point B are (6,3), and the coordinates of point D are (8,5).
The equation of line CD is y =

Respuesta :

Equation of the line CD is equals to [tex]y = \frac{-x}{4} +7[/tex].

What are parallel lines?

" Parallel lines are defined as the lines in the same plane never intersect with each other. They are equidistant to each other in the same plane."

Formula used

[tex]Slope = \frac{y_{2} -y_{1} }{x_{2}-x_{1} }[/tex]

According to the question,

Given,

Coordinates of A [tex](x_{1},y_{1})[/tex] = ( -2 , 5)

Coordinates of B [tex](x_{2},y_{2})[/tex] = ( 6 , 3)

Substitute the value to get the slope of line AB we get,

[tex]Slope of line AB 'm_{1}' =\frac{3-5}{6-(-2)}[/tex]

                    ⇒ [tex]m_{1} = \frac{-2}{8}[/tex]          

                              [tex]= \frac{-1}{4}[/tex]

Coordinates of C [tex](x_{1},y_{1})[/tex] = ( x ,y)

Coordinates of B [tex](x_{2},y_{2})[/tex] = ( 8,5)

Substitute the value to get the slope of line CD we get,

[tex]Slope of line CD 'm_{2}' =\frac{5-y}{8-x}[/tex]

Lines AB and CD are parallel.

Slope of parallel lines are equal.

Therefore,

                     [tex]m_{2} = m_{1}[/tex]          

                 ⇒ [tex]\frac{5-y}{8-x}[/tex] [tex]= \frac{-1}{4}[/tex]

                ⇒[tex]5-y = \frac{-1}{4} (8-x)[/tex]

                ⇒ [tex]y = \frac{-x}{4} +7[/tex]

Hence, equation of the line CD is equals to [tex]y = \frac{-x}{4} +7[/tex].

Learn more about parallel lines here

https://brainly.com/question/16701300

#SPJ2