Respuesta :
it should be this answer i got it off the internet it should be right
Answer:
[tex]\underline{\boxed{\sf{2(x - 11)(x + 11)}}}[/tex]
Step-by-step explanation:
[tex]\sf{2x^2 - 242}[/tex]
Common factor :
[tex]\sf{2x^2 - 242}[/tex]
[tex]\sf{2(x^2 - 121)}[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
Use the sum-product pattern :
[tex]\sf{2(x^2-121)}[/tex]
[tex]\sf{2(x^2 + 11x-11x - 121)}[/tex]
[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]
Common factor from the two pairs :
[tex]\sf{2(x^2 + 11x-11x - 121)}[/tex]
[tex]\sf{2(x(x+11) -11(x + 11))}[/tex]
[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]
Rewrite in factored form :
[tex]\sf{2(x(x+11)- 11(x + 11))}[/tex]
[tex]\sf{2(x - 11)(x + 11)}[/tex]
[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]
Solution :
[tex]\sf{2(x - 11)(x + 11)}[/tex]