Respuesta :

it should be this answer i got it off the internet it should be right
Ver imagen sebcanthoop

Answer:

[tex]\underline{\boxed{\sf{2(x - 11)(x + 11)}}}[/tex]

Step-by-step explanation:

[tex]\sf{2x^2 - 242}[/tex]

Common factor :

[tex]\sf{2x^2 - 242}[/tex]

[tex]\sf{2(x^2 - 121)}[/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

Use the sum-product pattern :

[tex]\sf{2(x^2-121)}[/tex]

[tex]\sf{2(x^2 + 11x-11x - 121)}[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]

Common factor from the two pairs :

[tex]\sf{2(x^2 + 11x-11x - 121)}[/tex]

[tex]\sf{2(x(x+11) -11(x + 11))}[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]

Rewrite in factored form :

[tex]\sf{2(x(x+11)- 11(x + 11))}[/tex]

[tex]\sf{2(x - 11)(x + 11)}[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]

Solution :

[tex]\sf{2(x - 11)(x + 11)}[/tex]