Answer:
x = -2
Step-by-step explanation:
Prime factorize, 27 and 9
27 = 3 *3 * 3 = 3³
9 = 3*3 = 3²
[tex]\sf \left(\dfrac{1}{27}\right)^{2-x}=9^{3x}\\\\[/tex]
[tex]\left(\dfrac{1}{3^3}\right)^{2-x}=9^{3x}\\\\(3^{-3})^{2-x}=(3^2)^{3x}\\\\3^{(-3)*(2-x)}=3^{2*3x}\\\\3^{-6+3x} = 3^{6x}[/tex]
Bases are same, so now compare the exponents
-6 + 3x = 6x
3x = 6x + 6
3x - 6x = 6
-3x = 6
x = 6/(-3)
[tex]\sf \boxed{\bf x = -2}[/tex]
[tex](x^m)^n=x^{m*n}\\\\\left(\dfrac{1}{a^{m}}\right)=a^{-m}\\[/tex]