Respuesta :

As tangents from a single point to the circle are equal in measure

  • AC=BC

ABC is isosceles

<A=60°

We know the radius hits any tangent on right angles

So

  • <PAC=90°
  • <PAD=90-60=30°

Now

  • cosØ=Base/Hypotenuse
  • cos30=6/x
  • √3/2=6/x
  • √3x=12
  • x=12/√3

accurate value

  • x=6.9

Answer:

[tex]x=4\sqrt{3}[/tex]

Step-by-step explanation:

If two tangents to a circle meet at one exterior point, the tangent segments are congruent.   Therefore, AC = BC

This means that ΔABC is an isosceles triangle and so
∠ABC = ∠BAC = 60°

The tangent of a circle is always perpendicular to the radius.

Therefore, ∠PAC = 90°

With this information, we can calculate ∠PAD:

⇒ ∠PAD + ∠BAC = ∠PAC

⇒ ∠PAD + 60° = 90°

⇒ ∠PAD = 90° - 60°

∠PAD = 30°

We now have a side length and an angle of ΔPAD (shown in orange on the attached diagram).  So using the cos trig ratio, we can calculate [tex]x[/tex]:

[tex]\sf \cos(\theta)=\dfrac{A}{H}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Given:

  • [tex]\theta[/tex] = ∠PAD = 30°
  • A = AD = 6
  • H = AP = [tex]x[/tex]

[tex]\implies \cos(30^{\circ})=\dfrac{6}{x}[/tex]

[tex]\implies x=\dfrac{6}{\cos(30^{\circ})}[/tex]

[tex]\implies x=\dfrac{6}{\frac{\sqrt{3}}{2}}[/tex]

[tex]\implies x=4\sqrt{3}[/tex]

Ver imagen semsee45
ACCESS MORE
EDU ACCESS