II and III only
We split up the integration interval [1, 4] into 3 equally-spaced subintervals of length (4 - 1)/3 = 1 :
[1, 2], [2, 3], [3, 4]
The area over each subinterval [L, R] is either approximated by a trapezoid, whose area will be
1 • (f(L) + f(R))/2
or by a rectangle with height f((L + R)/2) and hence area
1 • f((L + R)/2)
For f(x) = x², the area under f(x) over [1, 4] is approximated by
• using trapezoids (T) :
[tex]\displaystyle \int_1^4 x^2 \, dx \approx \frac{4-1}{2\times3} (1^2 + 2\times2^2 + 2\times3^2 + 4^2) = \frac{43}2 = \frac{86}4[/tex]
• using midpoints (M) :
[tex]\displaystyle \int_1^4 x^2 \, dx \approx \frac{4-1}3 \left(\left(\frac32\right)^2 + \left(\frac52\right)^2 + \left(\frac72\right)^2\right) = \frac{83}4[/tex]
so T > M. (This eliminates "I only" and "all of the functions".)
For f(x) = √x, the area is approximated by
• T :
[tex]\displaystyle \int_1^4 \sqrt x \, dx \approx \frac{4-1}{2\times3} (\sqrt1 + 2\sqrt2 + 2\sqrt3 + \sqrt4) \approx 4.646[/tex]
• M :
[tex]\displaystyle \int_1^4 \sqrt x\, dx \approx \frac{4-1}3 \left(\sqrt{\frac32} + \sqrt{\frac52} + \sqrt{\frac72}\right) \approx 4.677[/tex]
so T < M. (This eliminates "none of the functions".)