Answer:
120 cubes
Step-by-step explanation:
We can find the number of smaller cubes that will fit into larger rectangular prism by dividing the volume of prism by the volume of cube.
Rectangular prism:
[tex]\sf l = 2\dfrac{1}{2} =\dfrac{5}{2} \ inches\\\\w = 4 \ inches\\\\h =1\dfrac{1}{2}=\dfrac{3}{2} \ inches\\[/tex]
[tex]\sf \boxed{\text{\bf Volume of rectangular prism= l * w * h}}[/tex]
[tex]\sf =\dfrac{5}{2}*4*\dfrac{3}{2}\\\\= 5*1*3\\\\= 15 \ in^3[/tex]
Cube:
[tex]\sf side = \dfrac{1}{2} \ inches\\[/tex]
[tex]\sf \boxed{\text{ \bf Volume of cube = side * side *side}}[/tex]
[tex]\sf =\dfrac{1}{2}*\dfrac{1}{2}*\dfrac{1}{2}\\\\ =\dfrac{1}{8} \ in^3[/tex]
Number of cubes = Volume of prism ÷ volume of a cube
[tex]\sf = 15 \div \ \dfrac{1}{8}\\\\=15 *\dfrac{8}{1}\\\\= 120[/tex]