Respuesta :

Answer:

4th option

Step-by-step explanation:

using the addition formula for cosine

cos(a - b) = cosacosb + sinasinb

note that 15° = (45 - 30)° , then

cos15°

= cos(45 - 30)°

= cos45°cos30° + sin45°sin30°

= ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] ) + ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{1}{2}[/tex] )

= [tex]\frac{\sqrt{6} }{4}[/tex] + [tex]\frac{\sqrt{2} }{4}[/tex]

= [tex]\frac{\sqrt{6}+\sqrt{2} }{4}[/tex]

= [tex]\frac{\sqrt{2}+\sqrt{6} }{4}[/tex]

Answer:

[tex]\cos 15^{\circ}= \dfrac{\sqrt{2}+\sqrt{6}}{4}[/tex]

Step-by-step explanation:

Trig Identity:

[tex]\cos (A-B)=\cos A \cos B + \sin A \sin B[/tex]

[tex]\begin{aligned}\implies \cos 15^{\circ}=\cos (45^{\circ}-30^{\circ}) & =\cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}\\\\& = \dfrac{\sqrt{2}}{2} \cdot \dfrac{\sqrt{3}}{2} + \dfrac{\sqrt{2}}{2} \cdot \dfrac{1}{2}\\\\& = \dfrac{\sqrt{2}\sqrt{3}}{2 \cdot 2}+\dfrac{\sqrt{2} \cdot 1}{2 \cdot 2}\\\\& = \dfrac{\sqrt{2\cdot 3}}{4}+\dfrac{\sqrt{2}}{4}\\\\& = \dfrac{\sqrt{6}+\sqrt{2}}{4}\\\\& = \dfrac{\sqrt{2}+\sqrt{6}}{4}\end{aligned}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico