Answer:
Part A
To convert degrees to radians, multiply the given value by π/180°.
[tex]\begin{aligned}\implies 20^{\circ} & =20^{\circ} \times \dfrac{\pi}{180^{\circ}} \: \sf rad\\ & =\dfrac{1}{9} \pi \: \sf rad\end{aligned}[/tex]
Part B
Given:
[tex]\begin{aligned}\textsf{Area of a sector of a circle} & =\dfrac12 r^2 \theta\\\\\implies \textsf{Area of slice of cake} & =\dfrac{1}{2} \cdot 10^2 \cdot \dfrac{1}{9} \pi\\\\& = \dfrac{50}{9} \pi \: \sf cm^2\end{aligned}[/tex]
Part C
Given:
[tex]\begin{aligned}\textsf{Perimeter} & = 2r + \textsf{arc length}\\& = 2r + r \theta \\& = 2(10)+10\left(\dfrac{1}{9} \pi \right) \\& = 20 + \dfrac{10}{9} \pi \\& = 23.4906585\\& = 23.5\: \sf cm \:(1 \:dp)\end{aligned}[/tex]