Answer:
97.92 m³ (nearest hundredth)
Step-by-step explanation:
The composite solid is a cube with a cone cut out.
Therefore, to find the volume of the solid, subtract the volume of the cone from the volume of the cube.
Volume of Cube
[tex]\textsf{Volume of a cube}=\sf s^3 \quad\textsf{(where s is the side length)}[/tex]
Given:
Substitute given value into the formula:
[tex]\begin{aligned}\implies \sf V_{cube} & = \sf 5.1^3\\& = \sf 132.651\: m^3\end{aligned}[/tex]
Volume of Cone
[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
- [tex]\sf r=\dfrac{1}{2}(5.1)=2.55\:m[/tex]
- [tex]\sf h = 5.1\:m[/tex]
Substitute given values into the formula:
[tex]\begin{aligned}\sf \implies V_{cone} & = \sf \dfrac{1}{3} \pi (2.55^2)(5.1)\\& = \sf 11.05425 \pi \: m^3\end{aligned}[/tex]
Volume of Composite Solid
[tex]\begin{aligned}\sf V_{solid} & = \sf V_{cube}-V_{cone}\\& = \sf 132.651-11.05425 \pi \\& = \sf 97.92304941...\\& = \sf 97.92 \: m^3 \: (nearest\:hundredth)\end{aligned}[/tex]