Respuesta :

Answer:

g(x) = -|x| - 8

Step-by-step explanation:

Finding the values of a, h, and k :

a = slope of the line

  • a = -10 + 8 / 2 - 0
  • a = -2/2
  • a = -1

h = any horizontal shift (left/right)

  • As it lies on the y-axis, we can conclude no horizontal shift has taken place
  • h = 0

k = vertical shift (up/down)

  • It has shifted 8 units down
  • k = -8

Forming the equation :

⇒ g(x) = (-1)|x - 0| - 8

g(x) = -|x| - 8

Answer:

[tex]\large{\boxed{\sf y = -1|x-0| -8}}[/tex]

Explanation:

Absolute value of a graph formula:

  • y = a |x -h| + k

Identify the vertex : (h, k) = (0, -8)

Take two points: (0, -8), (1, -9)

[tex]\sf Find \ slope \ (a) : \sf \ \dfrac{y_2 - y_1}{x_2- x_1} \ = \ \ \dfrac{-9-(-8)}{1-0} \ \ = \ \ -1[/tex]

Put them together :  [tex]\bf y = -1|x-0| -8[/tex]

RELAXING NOICE
Relax