Respuesta :

Ankit

Step-by-step explanation:

Given:

The three points given below are collinear,

[tex](x_1,y_1) = (a,0)\\(x_2,y_2) = (0,b)\\(x_3,y_3) = (1,1)[/tex]

To prove:

[tex] \frac{1}{a} + \frac{1}{b} = 1[/tex]

Proof:

Collinear: given set of points lies on a straight line.

Now we are told that the given set of points are collinear hence they will not be able to form a triangle or the area enclosed by all the points will be equal to zero.

The formula of area of traingle in determinant form is

[tex]Area = \frac{1}{2} \begin{vmatrix} x_{1}& y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix}[/tex]

that can also be written as

[tex] \sf \small Area = \frac{1}{2}  [x_1 (y_2 - y_3) + x_3 (y_1 - y_2) + x_2 (y_3 - y_1)][/tex]

Since the points are collinear L.H.S will be zero,

[tex]\sf \small 0 = \frac{1}{2}  [x_1 (y_2 - y_3) + x_3 (y_1 - y_2) + x_2 (y_3 - y_1)][/tex]

Substituting all the given cordinates in above equation.

[tex]\sf \small 0 = \frac{1}{2}  [a (b - 1) + 1 (0 - b) + 0 (1 - 0)] [/tex]

[tex]\sf \small 0 \times 2 = ab - a - b \\ \sf \small 0 = ab - a - b \\ \sf \small a + b = ab \\ \sf \small \: dividing \: both \: sides \: by \: ab \\ \sf \frac{a}{ab} + \frac{b}{ab} = \frac{ab}{ab} \\ \sf \frac{\cancel a}{\cancel ab} + \frac{\cancel b}{a \cancel b} = \cancel \frac{ab}{ab} \\ \sf \frac{1}{a} + \frac{1}{b} = \frac{1}{1} [/tex]

[tex] \sf Hence \: proved,[/tex]

[tex] \Large {\frac{1}{a} + \frac{1}{b} = 1}[/tex]

Thanks for joining brainly community!

Use area of triangle formed by using those points is equal to zero

[tex] \tt Area\: of \:triangle =\frac{1}{2}[a(b-1)+0+1(0-b)][/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: [/tex]

[tex] \tt0=ab-a-b[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex]

[tex] \tt a+b=ab[/tex]

Divide both sides by ab

[tex] \tt \frac{a}{ab} + \frac{b}{ab} = 1[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex]

[tex] \tt\frac{1}{b} + \frac{1}{a} = 1[/tex]

Hence proved~

RELAXING NOICE
Relax