Respuesta :
Answer:
[tex]64\; {\rm m}[/tex], assuming that the rollercoaster is not attached to the track.
Explanation:
Let [tex]r[/tex] denote the radius of the loop. The height of the top of the loop would be [tex]2\, r[/tex].
Let [tex]a[/tex] denote the acceleration of the rollercoaster. At any position in the loop, if the speed of the rollercoaster is [tex]v[/tex], the (centripetal) acceleration of the rollercoaster would be:
[tex]\displaystyle a = \frac{v^{2}}{r}[/tex].
Let [tex]m[/tex] denote the mass of the rollercoaster. The net force on the rollercoaster would then be:
[tex]\displaystyle F_\text{net} = m\, a = \frac{m\, v^{2}}{r}[/tex].
The rollercoaster would stay on the track (and goes around the loop without falling off) only if the normal force [tex]F_\text{normal}[/tex] between the track and the rollercoaster is non-negative. In other words: it is necessary that [tex]F_\text{normal} > 0[/tex] for the rollercoaster to stay on the track.
At the top of the loop, [tex]F_\text{normal}[/tex] and the weight of the rollercoaster [tex]m\, g[/tex] are in the same direction as the centripetal acceleration (downwards towards the center of the loop.) Hence:
[tex]F_\text{net} = F_\text{normal} + m\, g[/tex].
Let [tex]v_\text{top}[/tex] denote the speed of the rollercoaster at the top of the loop.
[tex]\begin{aligned} F_\text{normal} &= F_\text{net} - m\, g \\ &= \frac{m\, v_\text{top}^{2}}{r} - m\, g\end{aligned}[/tex].
If [tex]F_\text{normal} > 0[/tex] at the top of the loop, then:
[tex]\displaystyle \frac{m\, v_\text{top}^{2}}{r} - m\, g > 0[/tex].
[tex]\displaystyle v_{\text{top}}^{2} > g\, r[/tex].
At the same time, by the conservation of energy, the sum of the kinetic energy [tex]\text{KE}[/tex] and gravitational potential energy [tex]\text{GPE}[/tex] of the rollercoaster should stay the same during the entire ride. Assuming that [tex]\text{GPE}\![/tex] is [tex]0[/tex] at the bottom of the loop:
[tex]\begin{aligned}& \text{KE at the bottom}\\ &= \text{KE at the top} + \text{GPE at the top}\end{aligned}[/tex].
Let [tex]v_{0}[/tex] denote the speed of the rollercoaster at the bottom of the loop.
[tex]\begin{aligned}\text{KE at the bottom} = \frac{1}{2}\, m\, {v_{0}}^{2}\end{aligned}[/tex].
The speed of the rollercoaster at the top of the loop [tex]v_\text{top}[/tex] is at least [tex](g/r)[/tex]. Therefore:
[tex]\begin{aligned}& \text{KE at the top}= \frac{1}{2}\, m\, {v_{\text{top}}}^{2} > \frac{1}{2} \, m\, g\, r\end{aligned}[/tex].
Since the height of the loop is [tex]2\, r[/tex], the [tex]\text{GPE}[/tex] of the rollercoaster at the top of the loop would be:
[tex]\text{GPE at the top} = m\, g\, h = 2\, m\, g\, r[/tex].
Thus:
[tex]\begin{aligned} \frac{1}{2}\, m\, {v_{0}}^{2} &= \text{KE at the bottom}\\ &= \text{KE at the top} + \text{GPE at the top} \\ & > \frac{1}{2}\, m\, g\, r + \text{GPE at the top}\\ & = \frac{1}{2}\, m\, g\, r+ 2\, m\, g\, r \\ &= \frac{5}{2}\, m\, g\, r\end{aligned}[/tex].
In other words:
[tex]\displaystyle \frac{1}{2}\, m\, {v_{0}}^{2} > \frac{5}{2}\, m\, g\, r[/tex].
Rearrange and simplify to obtain a bound on [tex]r[/tex]:
[tex]\begin{aligned} r < \frac{(1/2)\, m\, {v_{0}}^{2}}{(5/2)\, m\, g}\end{aligned}[/tex].
[tex]\begin{aligned} r < \frac{{v_{0}}^{2}}{5\, g}\end{aligned}[/tex].
Given that [tex]v_{0} = 40\; {\rm m\cdot s^{-1}[/tex] and [tex]g = 10\; {\rm N \cdot kg^{-1}} = 10\; {\rm m\cdot s^{-2}[/tex]:
[tex]\begin{aligned} r & < \frac{{v_{0}}^{2}}{5\, g} \\ &= \frac{(40\; {\rm m\cdot s^{-1}})^{2}}{5 \times (10\; {\rm m\cdot s^{-2}})} \\ &= 32\; {\rm m}\end{aligned}[/tex].
Hence, the radius of this loop is at most [tex]32\; {\rm m}[/tex], such that the height of the top of this loop is at most [tex]2 \times 32\; {\rm m} = 64\; {\rm m}[/tex].