Respuesta :
The radius and the height of the dimension that will minimize the amount of material used in the construction are [tex]\mathbf{r = \sqrt[3]{\dfrac{1500}{\pi}} }[/tex] and [tex]\mathbf{h = \dfrac{3000}{\pi ({\dfrac{1500}{\pi}} )^{2/3}}}[/tex] respectively.
How to find the dimension that minimizes a cylinder?
The dimension that minimizes the surface area of a cylinder can be determined by:
- Drawing the picture of the problem,
- Write down & identify optimization as well as the constraint equations;
- Use the derivative of the optimization equation to find the dimensions.
Given that:
- 1 L = 1000 cm³
- 3 L = 3000 cm³
The area of the cylinder = (2 πr)h + 2(πr²)
- A = 2πrh + 2πr²
The volume of the cylinder
- V = πr²h
Let's identify the constraint equation and Optimization equation:
To minimize the surface area of the can, we have:
- Area equation = Optimization equation
The constraint equation is the equation that limits us:
- Volume equation = constraint equation
So, Let's solve for h in our volume equation, we have:
3000 = πr² h
h = 3000/πr²
Now, from the Area equation
[tex]\mathbf{A = 2 \pi r(\dfrac{3000}{\pi r^2}) + 2\pi r^2}[/tex]
Taking the derivate and setting it to zero, we have;
Derivative:
[tex]\mathbf{A = \dfrac{6000}{ r}+ 2\pi r^2}[/tex]
[tex]\mathbf{A = 6000 r^{-1} + 2\pi r^2}[/tex]
[tex]\mathbf{A' = -6000 r^{-2} + 4\pi r}[/tex]
[tex]\mathbf{A' = 4\pi r-\dfrac{6000}{ r^{2} }}[/tex]
Setting it to zero, we have:
[tex]\mathbf{0=\dfrac{ 4 \pi r^3 - 6000}{r^2}}[/tex]
Factor out 4
0 = 4(πr³ - 1500)
1500 = πr³
r³ = 1500/π
[tex]\mathbf{r = \sqrt[3]{\dfrac{1500}{\pi}} }[/tex]
The above is the radius that minimizes the surface area of the cylinder;
From [tex]\mathbf{h = \dfrac{3000}{\pi r^2}}[/tex]
[tex]\mathbf{h = \dfrac{3000}{\pi ( \sqrt[3]{\dfrac{1500}{\pi}} )^2}}[/tex]
[tex]\mathbf{h = \dfrac{3000}{\pi ({\dfrac{1500}{\pi}} )^{2/3}}}[/tex]
Thus, the radius and height that minimize the amount of material to be used in its construction are [tex]\mathbf{r = \sqrt[3]{\dfrac{1500}{\pi}} }[/tex] and [tex]\mathbf{h = \dfrac{3000}{\pi ({\dfrac{1500}{\pi}} )^{2/3}}}[/tex] respectively.
Learn more about minimizing the dimension of a cylinder here:
https://brainly.com/question/2264534
#SPJ1

