solve fast pls i am mark you

Answer:
[tex] \bold{ x = - \frac{5}{6} }[/tex]
Step-by-step explanation:
⠀
⠀
[tex] \large \sf{ \frac{4x + 9}{3x + 11} = \frac{4x + 3}{3x + 2} }[/tex]
Solve for x.
⠀
⠀
⠀
⠀
⠀
[tex] \sf (4x + 9)(3x + 2) = (4x + 3)(3x + 11) \\ \\ \sf 4x(3x + 2) + 9(3x + 2) = 4x(3x + 11) + 3(3x + 11) \\ \\ \sf 12 {x}^{2} + 8x + 27x + 18 = 12 {x}^{2} + 44x + 9x + 33 \\ \\ \sf 12 {x}^{2} + 35x + 18 = 12 {x}^{2} + 53x + 33[/tex]
⠀
⠀
⠀
[tex] \sf 0 = 12 {x}^{2} + 53x + 33 - 12 {x}^{2} - 35x - 18 \\ \\ \sf 0 = 18x + 15[/tex]
⠀
⠀
⠀
[tex] \sf - 15 = 18x[/tex]
⠀
⠀
⠀
[tex] \large{ \sf \frac{ - \cancel{15} \tiny {5}}{ \cancel {18} \tiny6 } = x} \\ \\ \boxed{ x = - \frac{5}{6} }[/tex]
Answer:
[tex]\textsf{$x=-\dfrac{5}{6}$}[/tex]
Step-by-step explanation:
Given: [tex]\textsf{$\dfrac{4x+9}{3x+11}=\dfrac{4x+3}{3x+2}$}[/tex]
1. Cross-multiply
(4x + 9)(3x + 2) = (4x + 3)(3x + 11)
2. Distribute
⟶ (4x + 9)(3x + 2) = (4x + 3)(3x + 11)
⟶ 4x(3x) + 4x(2) + 9(3x) + 9(2) = 4x(3x) + 4x(11) + 3(3x) + 3(11)
⟶ 12x² + 8x + 27x + 18 = 12x² + 44x + 9x + 33
3. Combine like terms
⟶ 12x² + 8x + 27x + 18 = 12x² + 44x + 9x + 33
⟶ 12x² + 35x + 18 = 12x² + 53x + 33
4. Subtract 12x² from both sides
⟶ 12x² - 12x² + 35x + 18 = 12x² - 12x² + 53x +33
⟶ 35x + 18 = 53x + 33
5. Subtract 35x from both sides
⟶ 35x - 35x + 18 = 53x - 35x + 33
⟶ 18 = 18x + 33
6. Subtract 33 from both sides
⟶ 18 = 18x + 33
⟶ 18 - 33 = 18x + 33 - 33
⟶ -15 = 18x
7. Divide both sides by 18 to isolate the variable
[tex]\longrightarrow\textsf{$\dfrac{-15}{18}=\dfrac{18x}{18}$}\\\\\\\longrightarrow\textsf{$\dfrac{-15}{18}=x$}\\\\[/tex]
8. Reduce
[tex]\longrightarrow\textsf{$\dfrac{-15\div 3}{18\div 3}=x$}\\\\\\\longrightarrow\textsf{$-\dfrac{5}{6}=x$}[/tex]