Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/2777715

______________


Find the domain of the function:

[tex]\mathsf{f(x)=\dfrac{cos\,x}{1-sin\,x}}[/tex]


Denominators can't be equal to zero:

[tex]\mathsf{1-sin\,x\ne 0}\\\\ \mathsf{sin\,x \ne 1}\\\\ \mathsf{sin\,x \ne sin\,\dfrac{\pi}{2}}[/tex]


So,

[tex]\mathsf{x\ne \dfrac{\pi}{2}+k\cdot 2\pi,\qquad\quad k\in\mathbb{Z}.}[/tex]


Domain:

[tex]\mathsf{Dom(f)=\left\{x\in\mathbb{R}:~x\ne \frac{\pi}{2}+k\cdot 2\pi,~~k\in\mathbb{Z}\right\}.}[/tex]


I hope this helps. =)

The function's domain is indeed the set among all features for the function. The domain would be all the values in a method and all the outgoing values are within range. Specific functions with much more limited domains can also be described.  

Following are calculations of the domain:

Given:

[tex]\bold{\to f(x)= \frac{(\cos x)}{(1-\sin x)}}[/tex]

Find:

Domain=?

Solution:

The functions and periods for [tex]\bold{ \frac{\cos \left(x\right)}{1-\sin \left(x\right)}}[/tex]  are as follows:

[tex]\cos x[/tex] with [tex]2 \pi[/tex] periodicity.

[tex]\sin x[/tex]  with [tex]2 \pi[/tex] periodicity.

The compound periodicity is therefore [tex]2 \pi[/tex]:

[tex]Domain \ of =\frac{\cos x}{1-sin x} \begin{bmatrix}Solution & 2\pi n\le \:x<\frac{\pi }{2}+2\pi n \ Or \ \frac{\pi }{2}+2\pi n<x<2\pi +2\pi n\\ Interval \ Notation & (2\pi n,\:\frac{\pi }{2}+2\pi n)\cup (\frac{\pi }{2}+2\pi n,\:2\pi +2\pi n)\end{bmatrix}[/tex]

Learn more:

brainly.com/question/15339465

Ver imagen codiepienagoya