Respuesta :
If you're using the app, try seeing this answer through your browser: https://brainly.com/question/2777715
______________
Find the domain of the function:
[tex]\mathsf{f(x)=\dfrac{cos\,x}{1-sin\,x}}[/tex]
Denominators can't be equal to zero:
[tex]\mathsf{1-sin\,x\ne 0}\\\\ \mathsf{sin\,x \ne 1}\\\\ \mathsf{sin\,x \ne sin\,\dfrac{\pi}{2}}[/tex]
So,
[tex]\mathsf{x\ne \dfrac{\pi}{2}+k\cdot 2\pi,\qquad\quad k\in\mathbb{Z}.}[/tex]
Domain:
[tex]\mathsf{Dom(f)=\left\{x\in\mathbb{R}:~x\ne \frac{\pi}{2}+k\cdot 2\pi,~~k\in\mathbb{Z}\right\}.}[/tex]
I hope this helps. =)
______________
Find the domain of the function:
[tex]\mathsf{f(x)=\dfrac{cos\,x}{1-sin\,x}}[/tex]
Denominators can't be equal to zero:
[tex]\mathsf{1-sin\,x\ne 0}\\\\ \mathsf{sin\,x \ne 1}\\\\ \mathsf{sin\,x \ne sin\,\dfrac{\pi}{2}}[/tex]
So,
[tex]\mathsf{x\ne \dfrac{\pi}{2}+k\cdot 2\pi,\qquad\quad k\in\mathbb{Z}.}[/tex]
Domain:
[tex]\mathsf{Dom(f)=\left\{x\in\mathbb{R}:~x\ne \frac{\pi}{2}+k\cdot 2\pi,~~k\in\mathbb{Z}\right\}.}[/tex]
I hope this helps. =)
The function's domain is indeed the set among all features for the function. The domain would be all the values in a method and all the outgoing values are within range. Specific functions with much more limited domains can also be described.
Following are calculations of the domain:
Given:
[tex]\bold{\to f(x)= \frac{(\cos x)}{(1-\sin x)}}[/tex]
Find:
Domain=?
Solution:
The functions and periods for [tex]\bold{ \frac{\cos \left(x\right)}{1-\sin \left(x\right)}}[/tex] are as follows:
[tex]\cos x[/tex] with [tex]2 \pi[/tex] periodicity.
[tex]\sin x[/tex] with [tex]2 \pi[/tex] periodicity.
The compound periodicity is therefore [tex]2 \pi[/tex]:
[tex]Domain \ of =\frac{\cos x}{1-sin x} \begin{bmatrix}Solution & 2\pi n\le \:x<\frac{\pi }{2}+2\pi n \ Or \ \frac{\pi }{2}+2\pi n<x<2\pi +2\pi n\\ Interval \ Notation & (2\pi n,\:\frac{\pi }{2}+2\pi n)\cup (\frac{\pi }{2}+2\pi n,\:2\pi +2\pi n)\end{bmatrix}[/tex]
Learn more:
brainly.com/question/15339465