Given circle O lies perfectly within square ABCD. If side BC = 6.84, then what is the area of the orange region?

What we get to know by looking at picture :
[tex] \\ \\\\ [/tex]
To find :
[tex] \\ \\ \\ [/tex]
Given:
[tex] \\ \\ \\ [/tex]
Concept:
So as we can orange doesn't lies inside circle. And the wall of circle touches all four sides of circle. So first we have to find area of circle and then Area of square. And then we will subtract the ares. The result will be Area of orange part.
[tex] \\\\ \\ [/tex]
[tex] \\ \\\\ [/tex]
[tex] \red{ \textsf{ \textbf{Area of circle: }}}[/tex]
[tex] \\ [/tex]
To find area of circle we need radius of it i.e Length of OP.
As BC = AB
∴AB = 6.84
As O is the center of square ∴it's center of circle too
Therefore:
[tex] \\\\ [/tex]
Now Let's find area :
[tex] \\\\ [/tex]
[tex] \star \boxed{ \rm Area~of~circle = \pi {r}^{2} }[/tex]
here :
[tex] \\ [/tex]
[tex]: \implies\sf Area~of~circle = \pi {r}^{2} \\ \\ \\ : \implies\sf Area~of~circle = \dfrac{22}{7} \times {3.42}^{2} \\ \\ \\ : \implies\sf Area~of~circle = \dfrac{22}{7} \times {3.42}^{2} \\ \\ \\ : \implies\sf Area~of~circle = \dfrac{22}{7} \times11.7\\\\\\: \implies\sf Area~of~circle = \dfrac{257.4}{7} \\ \\ \\ : \implies \boxed{ \orange{\tt{ Area~of~circle = 36.6 \{approx \}}}} \bf \dag[/tex]
[tex] \\ \\ [/tex]
[tex] \red{ \textsf{ \textbf{Area of square: }}}[/tex]
[tex] \\\\ [/tex]
[tex] \star \boxed{ \rm Area~of~square = {side}^{2} }[/tex]
[tex] \\ \\ [/tex]
[tex]: \implies\sf Area~of~square = {side}^{2} \\ \\ \\ : \implies\sf Area~of~square = {6.84}^{2} \\ \\ \\ : \implies\sf Area~of~square = {6.84} \times 6.84 \\ \\ \\ : \implies \boxed{\tt{ \orange{Area~of~square = 46.8 \{aprox \}}}}\bf\dag[/tex]
[tex] \\ \\ [/tex]
[tex] \red{ \textsf{ \textbf{Area of orange \: part: }}}[/tex]
[tex] \\ [/tex]
[tex] \star\sf \boxed{ \rm Area_{(orange \: part)} = Area_{(square)} - Area_{(circle)}}[/tex]
[tex] \\ \\ [/tex]
[tex]: \implies\sf Area_{(orange \: part)} = 46.8 - 36.6 \\ \\ \\ : \implies \boxed{ \blue{\tt{Area_{(orange \: part)} = 10.2}}}\bf\dag[/tex]