Find the foci of the hyperbola defined by the equation [tex]\frac{(x+8)^{2} }{9} - \frac{(y-7)^{2} }{25} =1[/tex] . If necessary, round to the nearest tenth.

Answer:
Foci: (-2.2, 7) and (-13.8, 7)
(nearest tenth)
Step-by-step explanation:
General equation of a hyperbola
[tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1[/tex]
Center: (h, k)
Focal length equation: a² + b² = c²
Foci: (h ± c, k)
Given equation:
[tex]\dfrac{(x+8)^2}{9}-\dfrac{(y-7)^2}{25}=1[/tex]
⇒ h = -8
⇒ k = 7
⇒ a² = 9
⇒ b² = 25
Focal length:
⇒ a² + b² = c²
⇒ 9 + 25 = c²
⇒ c = √34
Foci:
⇒ (h ± c, k) = (-8 ± √34, 7)
= (-2.2, 7) and (-13.8, 7)
**Refer to the attached graph**
Asymptotes are in red
Foci are in blue