Answer: [tex]d=\sqrt{50}, 5\sqrt{2}, \,\text{or about}\;7.1[/tex]
Step-by-step explanation:
We can use the distance formula to solve.
[tex]\displaystyle d=\sqrt{(x_{2}-x_{1})^2 +(y_{2}-y_{1})^2}[/tex]
[tex]\displaystyle d=\sqrt{(4--3)^2 +(1-2)^2}[/tex]
[tex]\displaystyle d=\sqrt{(4+3)^2 +(1-2)^2}[/tex]
[tex]\displaystyle d=\sqrt{(7)^2 +(-1)^2}[/tex]
[tex]\displaystyle d=\sqrt{49+1}[/tex]
[tex]\displaystyle d=\sqrt{50}[/tex]
d ≈ 7.1