Change the subject of the formula L = v 4kt - p to k.

Answer:
[tex]\boxed{k = \frac{L^2 + p}{4t}}[/tex]
General Formulas and Concepts:
Algebra I
Basic Equality Properties
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle L = \sqrt{4kt - p}[/tex]
Step 2: Solve for k
We can use equality properties to help us rewrite the equation to get k as our subject:
Let's first square both sides:
[tex]\displaystyle\begin{aligned}L = \sqrt{4kt - p} & \rightarrow L^2 = \big( \sqrt{4kt - p} \big) ^2 \\& \rightarrow L^2 = 4kt - p \\\end{aligned}[/tex]
Next, add p to both sides:
[tex]\displaystyle\begin{aligned}L = \sqrt{4kt - p} & \rightarrow L^2 = \big( \sqrt{4kt - p} \big) ^2 \\& \rightarrow L^2 = 4kt - p \\& \rightarrow L^2 + p = 4kt \\\end{aligned}[/tex]
Next, divide 4t by both sides:
[tex]\displaystyle\begin{aligned}L = \sqrt{4kt - p} & \rightarrow L^2 = \big( \sqrt{4kt - p} \big) ^2 \\& \rightarrow L^2 = 4kt - p \\& \rightarrow L^2 + p = 4kt \\& \rightarrow \frac{L^2 + p}{4t} = k \\\end{aligned}[/tex]
We can rewrite the new equation by swapping sides to obtain our final expression:
[tex]\displaystyle\begin{aligned}L = \sqrt{4kt - p} & \rightarrow \boxed{k = \frac{L^2 + p}{4t}}\end{aligned}[/tex]
∴ we have changed the subject of the formula.
---
Learn more about Algebra I: https://brainly.com/question/27698547
---
Topic: Algebra I