Respuesta :
Answer:
[tex]30^{\circ}[/tex].
Step-by-step explanation:
Let [tex]\theta[/tex] denote the unknown angle of elevation. Let [tex]h[/tex] denote the height of the tower.
Refer to the diagram attached. In this diagram, [tex]{\sf A}[/tex] denotes the top of the tower while [tex]{\sf B}[/tex] denote the base of the tower; [tex]{\sf BC}[/tex] and [tex]{\sf BD}[/tex] denote the shadows of the tower when the angle of elevation of the sun is [tex]60^{\circ}[/tex] and [tex]\theta[/tex], respectively. The length of segment [tex]{\sf AB}[/tex] is [tex]h[/tex]; [tex]\angle {\sf ACB} = 60^{\circ}[/tex], [tex]\angle {\sf ADB} = \theta[/tex], and [tex]{\sf BD} = 3\, {\sf BC}[/tex]..
Note that in right triangle [tex]\triangle {\sf ABC}[/tex], segment [tex]{\sf AB}[/tex] (the tower) is opposite to [tex]\angle {\sf ACB}[/tex]. At the same time, segment [tex]{\sf BC}[/tex] (shadow of the tower when the angle of elevation of the sun is [tex]60^{\circ}[/tex]) is adjacent to [tex]\angle {\sf ACB}[/tex].
Thus, the ratio between the length of these two segments could be described with the tangent of [tex]m\angle {\sf ACB} = 60^{\circ}[/tex]:
[tex]\begin{aligned}\tan(\angle {\sf ACB}) &= \frac{\text{opposite}}{\text{adjacent}} = \frac{{\sf AB}}{{\sf BC}}\end{aligned}[/tex].
[tex]\begin{aligned}\frac{{\sf AB}}{{\sf BC}} = \tan(60^{\circ}) = \sqrt{3}\end{aligned}[/tex].
The length of segment [tex]{\sf AB}[/tex] is [tex]h[/tex]. Rearrange this equation to find the length of segment [tex]{\sf BC}[/tex]:
[tex]\begin{aligned} {\sf BC} &= \frac{{\sf AB}}{\tan(\angle ACB)} \\ &= \frac{h}{\tan(60^{\circ})}\\ &= \frac{h}{\sqrt{3}} \\ &\end{aligned}[/tex].
Therefore:
[tex]\begin{aligned}{\sf BD} &= 3\, {\sf BC} \\ &= \frac{3\, h}{\sqrt{3}} \\ &= (\sqrt{3})\, h\end{aligned}[/tex].
Similarly, in right triangle [tex]{\sf ABD}[/tex], segment [tex]{\sf AB}[/tex] (the tower) is opposite to [tex]\angle {\sf ADB}[/tex]. Segment [tex]{\sf BD}[/tex] (shadow of the tower, with [tex]\theta[/tex] as the angle of elevation of the sun) is adjacent to [tex]\angle {\sf ADB}[/tex].
[tex]\begin{aligned}\tan(\angle {\sf ADB}) &= \frac{\text{opposite}}{\text{adjacent}} = \frac{{\sf AD}}{{\sf BD}}\end{aligned}[/tex].
[tex]\begin{aligned}\frac{{\sf AB}}{{\sf BD}} = \tan(\theta) \end{aligned}[/tex].
Since [tex]{\sf AB} = h[/tex] while [tex]{\sf BD} = (\sqrt{3})\, h[/tex]:
[tex]\begin{aligned}\tan(\theta) &= \frac{{\sf AB}}{{\sf BD}} \\ &= \frac{h}{(\sqrt{3})\, h} \\ &= \frac{1}{\sqrt{3}}\end{aligned}[/tex].
Therefore:
[tex]\begin{aligned}\theta &= \arctan\left(\frac{1}{\sqrt{3}}\right) \\ &= 30^{\circ}\end{aligned}[/tex].
In other words, the angle of elevation of the sun at the time of the longer shadow would be [tex]30^{\circ}[/tex].
