Respuesta :
Answer:
A. 5.19 units
Step-by-step explanation:
[tex]\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right) \quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle)}[/tex]
Given:
- [tex]\theta[/tex] = 81°
- Arc length = 7.34 units
Substituting given values into the equation and solving for r:
[tex]\implies 7.34=2 \pi r\left(\dfrac{81^{\circ}}{360^{\circ}}\right)[/tex]
[tex]\implies 7.34=r\left(\dfrac{18 \pi}{40}\right)[/tex]
[tex]\implies 7.34 \cdot 40=18 \pi r[/tex]
[tex]\implies 293.6=18 \pi r[/tex]
[tex]\implies r=\dfrac{293.6}{18 \pi}[/tex]
[tex]\implies r=5.19 \sf \: units \:(2\:dp)[/tex]
Answer:
A) 5.19 units
Step-by-step explanation:
Formula for arc length :
- arc length = 2πr × θ/360°
- 7.34 = 2 x 22/7 x r x 81/360
- 7.34 = 44/7 x 9/40 x r
- 7.34 = 396/280 x r
- r = 7.34/396 x 280
- r = 280 x 0.0185353535
- r = 5.19 units (approximately)