The length of an arc of a circle is 7.34 units, and the measure of the corresponding central angle is 81 degrees. What is the approximate length of the radius of the circle?
A 5.19 units
B 3.51 units
C 11.03 units
D 10.38 units

Respuesta :

Answer:

A.  5.19 units

Step-by-step explanation:

[tex]\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right) \quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle)}[/tex]

Given:

  • [tex]\theta[/tex] = 81°
  • Arc length = 7.34 units

Substituting given values into the equation and solving for r:

[tex]\implies 7.34=2 \pi r\left(\dfrac{81^{\circ}}{360^{\circ}}\right)[/tex]

[tex]\implies 7.34=r\left(\dfrac{18 \pi}{40}\right)[/tex]

[tex]\implies 7.34 \cdot 40=18 \pi r[/tex]

[tex]\implies 293.6=18 \pi r[/tex]

[tex]\implies r=\dfrac{293.6}{18 \pi}[/tex]

[tex]\implies r=5.19 \sf \: units \:(2\:dp)[/tex]

Answer:

A) 5.19 units

Step-by-step explanation:

Formula for arc length :

  • arc length = 2πr × θ/360°
  • 7.34 = 2 x 22/7 x r x 81/360
  • 7.34 = 44/7 x 9/40 x r
  • 7.34 = 396/280 x r
  • r = 7.34/396 x 280
  • r = 280 x 0.0185353535
  • r = 5.19 units (approximately)
ACCESS MORE
EDU ACCESS