Respuesta :

To find side given angle and two sides:

a² = b² + c² − 2bc cos(A)

Here given:

  • a = AC cm
  • b = 10 cm
  • c = 7 cm
  • angle A = 120°

Solve for AC (a):

  • a² = (10)² + (7)² − 2(10)(7) cos(120)
  • a² = 219
  • a = √219
  • a = 14.7986 cm
  • a = 14.8 cm

Answer:

AC = 14.8 cm (1 dp)

Step-by-step explanation:

Cosine rule

[tex]\sf b^2=a^2+c^2-2ac \cos B[/tex]

(where a, b and c are the sides, and B is the angle opposite side b)

Given:

  • a = 10 cm
  • c = 7 cm
  • B = 120°
  • b = AC

Substituting the given values into the formula and solving for b:

[tex]\implies \sf AC^2=10^2+7^2-2(10)(7) \cos 120^{\circ}[/tex]

[tex]\implies \sf AC^2=100+49+70[/tex]

[tex]\implies \sf AC^2=219[/tex]

[tex]\implies \sf AC=\pm\sqrt{219}[/tex]

As length is positive,

[tex]\implies \sf AC=\sqrt{219}\:cm[/tex]

[tex]\implies \sf AC=14.8\:cm\:(1\:dp)[/tex]

ACCESS MORE