Respuesta :

Answer:

CD ≈ 26.0 cm

Step-by-step explanation:

using the sine ratio in right triangle ABD

sin35° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AB}{BD}[/tex] = [tex]\frac{12}{BD}[/tex] ( multiply both sides by BD )

BD × sin35° = 12 ( divide both sides by sin35° )

BD = [tex]\frac{12}{sin35}[/tex] ≈ 20.92 cm

using the sine rule in Δ BCD

[tex]\frac{BD}{sinC}[/tex] = [tex]\frac{CD}{sinB}[/tex] , that is

[tex]\frac{20.92}{sin52}[/tex] = [tex]\frac{CD}{sin102}[/tex] ( cross- multiply )

CD × sin52° = 20.92 × sin102° ( divide both sides by sin52° )

CD = [tex]\frac{20.92sin102}{sin52}[/tex] ≈ 26.0 cm ( to 3 significant figures )

Answer:

CD = 26.0 cm (3 sf)

Step-by-step explanation:

Sine Rule for side lengths

[tex]\sf \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

(where A, B and C are the angles and a, b and c are the sides opposite the angles)

Find length BD:

[tex]\implies \sf \dfrac{AB}{\sin ADB}=\dfrac{BD}{\sin BAD}[/tex]

[tex]\implies \sf \dfrac{12}{\sin 35^{\circ}}=\dfrac{BD}{\sin 90^{\circ}}[/tex]

[tex]\implies \sf BD=\dfrac{12\sin 90^{\circ}}{\sin 35^{\circ}}[/tex]

[tex]\implies \sf BD=20.92136155...cm[/tex]

Find length CD:

[tex]\implies \sf \dfrac{BD}{\sin BCD}=\dfrac{CD}{\sin DBC}[/tex]

[tex]\implies \sf \dfrac{20.921...}{\sin 52^{\circ}}=\dfrac{CD}{\sin 102^{\circ}}[/tex]

[tex]\implies \sf CD=\dfrac{20.921...\sin 102^{\circ}}{\sin 52^{\circ}}[/tex]

[tex]\implies \sf CD=25.96941667...cm[/tex]

Therefore, CD = 26.0 cm (3 sf)

ACCESS MORE