If you shift the exponential parent function, f(x) = 2^x , right 2 units, what is the equation of the new function?

Respuesta :

Answer:

[tex]g(x)=2^{x-2}[/tex]

Step-by-step explanation:

Translations

For [tex]a > 0[/tex]

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

Parent function:  [tex]f(x)=2^x[/tex]

Translated 2 units right:  [tex]g(x)=f(x-2)=2^{x-2}[/tex]

Ver imagen semsee45

We know the rule for shifting right(x is changed)

  • f(x) —» f(x-a)

So

here

For a =2

  • f(x-2)
  • [tex]\sf 2^{x-2}[/tex]
ACCESS MORE