Respuesta :

Answer:

7/25

Step-by-step explanation:

Let [tex]\theta= \arcsin(\frac{3}{5})[/tex] so we have [tex]x=\cos(2\theta)[/tex]

As [tex]\cos(2\theta)=\cos^2\theta-\sin^2\theta[/tex], we'll have [tex]\cos[2\arcsin(\frac{3}{5})]=\bigr[\cos(\arcsin(\frac{3}{5}))\bigr]^2-\bigr[(\sin(\arcsin(\frac{3}{5}))\bigr]^2[/tex]

To determine [tex]\cos(\arcsin(\frac{3}{5}))[/tex], construct a right triangle with an opposite side of 3 and a hypotenuse of 5. This is because since [tex]\theta=\arcsin(\frac{3}{5})[/tex], then [tex]\sin\theta=\frac{3}{5}=\frac{\text{Opposite}}{\text{Hypotenuse}}[/tex]. If you recognize the Pythagorean Triple 3-4-5, you can figure out that the adjacent side is 4, and thus, [tex]\cos\theta=\frac{4}{5}=\frac{\text{Adjacent}}{\text{Hypotenuse}}[/tex]. This means that [tex]\cos(\arcsin(\frac{3}{5}))=\frac{4}{5}[/tex].

Hence, [tex]\cos[2\arcsin(\frac{3}{5})]=(\frac{4}{5})^2-(\frac{3}{5})^2=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}[/tex]

ACCESS MORE