Respuesta :

Answer:

[tex]\sf \tan(C)=\dfrac{3}{4}[/tex]

Step-by-step explanation:

First, find the missing side length (DE) by using Pythagoras' Theorem:

a² + b² = c²  

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

⇒ 36² + DE² = 45²  

⇒ DE² = 45² - 36²

⇒ DE² = 729

⇒ DE = √729

⇒ DE = 27

Tan trig ratio

[tex]\sf \tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Given:

  • [tex]\theta[/tex] = C
  • O = DE = 27
  • A = 36

Substituting the given values into the formula:

[tex]\implies \sf \tan(C)=\dfrac{27}{36}=\dfrac{3}{4}[/tex]

Answer:

3/4

Step-by-step explanation:

Finding the missing side by applying the Pythagorean Theorem :

  • a² + b² = c²
  • a² = c² - b²
  • a² = (45)² - (36)²
  • a² = 2025 - 1296
  • a² = 729
  • a = 27

Finding tan C :

  • opposing side of ∠C / adjacent side of ∠C
  • DE / CD
  • 27/36
  • 3/4
ACCESS MORE