Respuesta :

Answer:

[tex]x=5,\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}[/tex]

Step-by-step explanation:

1) Move all terms to one side.

[tex]2x^{3} -x^{2} -3x-210=0[/tex]

2) Factor [tex]2{x}^{3}-{x}^{2}-3x-210[/tex] using Polynomial Division.

1 -  Factor the following.

[tex]2x^{3} -x^{2} -3x-210[/tex]

2 -  First, find all factors of the constant term 210.

[tex]1,2,3,4,5,6,7,10,14,15,21,30,35,42,70,105,210[/tex]

3) Try each factor above using the Remainder Theorem.

Substitute 1 into x. Since the result is not 0, x-1 is not a factor..

[tex]2*1^{3} -1^{2} -3*1-210=-212[/tex]

Substitute -1 into x. Since the result is not 0, x+1 is not a factor..

[tex]2(-1)^{3} -(-1)^{2} -3*-1-210=-210[/tex]

Substitute 2 into x. Since the result is not 0, x-2 is not a factor..

[tex]2*2^{3} -2^{2} -3*2-210=-204[/tex]

Substitute -2 into x. Since the result is not 0, x+2 is not a factor..

[tex]2{(-2)}^{3}-{(-2)}^{2}-3\times -2-210 = -224[/tex]

Substitute 3 into x. Since the result is not 0, x-3 is not a factor..

[tex]2\times {3}^{3}-{3}^{2}-3\times 3-210 = -174[/tex]

Substitute -3 into x. Since the result is not 0, x+3 is not a factor..

[tex]2{(-3)}^{3}-{(-3)}^{2}-3\times -3-210 = -264[/tex]

Substitute 5 into x. Since the result is 0, x-5 is a factor..

[tex]2\times {5}^{3}-{5}^{2}-3\times 5-210 =0[/tex]

------------------------------------------------------------------------------------------

⇒ [tex]x-5[/tex]

4)  Polynomial Division: Divide [tex]2{x}^{3}-{x}^{2}-3x-210[/tex]  by [tex]x-5[/tex].

                                               [tex]2x^{2}[/tex]                       [tex]9x[/tex]                      [tex]42[/tex]

                                      -------------------------------------------------------------------------

[tex]x-5[/tex]                               |    [tex]2x^{3}[/tex]                          [tex]-x^{2}[/tex]                     [tex]-3x[/tex]     [tex]-210[/tex]

                                           [tex]2x^{3}[/tex]                             [tex]-10x^{2}[/tex]

                                        -----------------------------------------------------------------------

                                                                             [tex]9x^{2}[/tex]                [tex]-3x[/tex]       [tex]-210[/tex]

                                     --------------------------------------------------------------------------

                                                                          [tex]42x[/tex]                              [tex]-210[/tex]

                                                                         [tex]42x[/tex]                               [tex]-210[/tex]

                                      -------------------------------------------------------------------------

5)  Rewrite the expression using the above.

[tex]2x^2+9x+42[/tex]

[tex](2x^2+9x+42)(x-5)=0[/tex]

3) Solve for [tex]x.[/tex]

[tex]x=5[/tex]

4)  Use the Quadratic Formula.

1 - In general, given [tex]a{x}^{2}+bx+c=0[/tex] , there exists two solutions where:

[tex]x=\frac{-b+\sqrt{b^{2} -4ac} }{2a} ,\frac{-b-\sqrt{b^2-4ac} }{2a}[/tex]

2 -  In this case, [tex]a=2,b=9[/tex] and [tex]c = 42.[/tex]

[tex]x=\frac{-9+\sqrt{9^2*-4*2*42} }{2*2} ,\frac{-9-\sqrt{9^2-4*2*42} }{2*2}[/tex]

3 - Simplify.

[tex]x=\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}[/tex]

5) Collect all solutions from the previous steps.

[tex]x=5,\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}[/tex]

You want to know why what?
ACCESS MORE