The roots of the equation [tex]x^{2}[/tex]-15x +2 =0 are 14.865 and 0.135
Completing the square method is one of the methods to find the roots of the given quadratic equation.
Given equation is:
[tex]x^{2}[/tex]-15x +2 =0
Using Completing the Square method we have
[tex]x^{2}[/tex]-15x +2 + [tex](\frac{15}{2})^{2}[/tex] - [tex](\frac{15}{2})^{2}[/tex] =0
Now,
[tex]x^{2}[/tex]-15x + [tex](\frac{15}{2})^{2}[/tex] - [tex](\frac{15}{2})^{2}[/tex] +2=0
or, [tex][x-(\frac{15}{2})]^{2}[/tex] - 225/4 +2 =0
or, [tex][x-(\frac{15}{2})]^{2}[/tex] -217*4 =0
or, [tex][x-(\frac{15}{2})]^{2}[/tex] = 217/4
or, [tex]x[/tex] = [tex]\pm \frac{14.73}{2} + \frac{15}{2}[/tex]
or, [tex]x_1[/tex]= 14.865, [tex]x_2[/tex]= 0.135
Thus, the roots of the quadratic equation are: 14.865 and 0.135
Learn more completing square method here:
https://brainly.com/question/8631373
#SPJ1