Respuesta :

Answer:

7.8

Step-by-step explanation:

distance formula : [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

where the x and y values are derived from the given points

here the given points are (11,3) and (6,9)

assigning variables

(x1,y1) = (11,3) so x1 = 11 and y1 = 3

(x2,y2) = (6,9) so x2 = 6 and y2 = 9

plugging in values into formula

recall formula [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

==> plug in x1 = 11 , y1 = 3 , x2 = 6 and y2 = 9

[tex]d=\sqrt{(6-11)^2+(9-3)^2}[/tex]

==> subtract values in parenthesis

[tex]d=\sqrt{(-5)^2+(6)^2}[/tex]

==> evaluate exponents

[tex]d=\sqrt{25+36}[/tex]

==> add 25 and 36

[tex]d=\sqrt{61}=7.8[/tex] ( approximately )

ACCESS MORE