The equivalent expression of [tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2}[/tex] is [tex]\frac{x^{10} y^{14}}{729}[/tex]
The expression is given as:
[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2[/tex]
Expand the expression
[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = (\frac{27x^3y^{-15}}{(x^{8} y^{-8}})^{-2[/tex]
Apply the law of indices
[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = (\frac{27}{(x^{5} y^{7}})^{-2[/tex]
Take the inverse of the expression
[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = (\frac{x^{5} y^{7}}{27})^2[/tex]
Apply the square exponent to the expression
[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = \frac{x^{10} y^{14}}{729}[/tex]
Hence, the equivalent expression of [tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2}[/tex] is [tex]\frac{x^{10} y^{14}}{729}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832
#SPJ4