Which expression is equivalent to (startfraction (3 x y superscript negative 5 baseline) cubed over (x superscript negative 2 baseline y squared) superscript negative 4 baseline) endfraction) superscript negative 2? assume startfraction x superscript 10 baseline y superscript 14 baseline over 729 endfraction.

Respuesta :

The equivalent expression of [tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2}[/tex] is [tex]\frac{x^{10} y^{14}}{729}[/tex]

How to determine the equivalent expression?

The expression is given as:

[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2[/tex]

Expand the expression

[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = (\frac{27x^3y^{-15}}{(x^{8} y^{-8}})^{-2[/tex]

Apply the law of indices

[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = (\frac{27}{(x^{5} y^{7}})^{-2[/tex]

Take the inverse of the expression

[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = (\frac{x^{5} y^{7}}{27})^2[/tex]

Apply the square exponent to the expression

[tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2} = \frac{x^{10} y^{14}}{729}[/tex]

Hence, the equivalent expression of [tex](\frac{(3xy^{-5})^3}{(x^{-2} y^2) ^{-4}})^{-2}[/tex] is [tex]\frac{x^{10} y^{14}}{729}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2972832

#SPJ4

ACCESS MORE