Based on the calculation below, the amount that can be withdrawn each month for 10 years is a. $769.27.
First, we calculate the future value (FV) of the amount after 20 years using the formula for calculating the Future Value (FV) of an Ordinary Annuity as follows:
FV = A * (((1 + r)^n – 1) / r) ................................. (1)
Where,
FV = Future value of the amount after 20 years =?
A = Monthly deposit = $235.15
r = Monthly interest rate = 3.2% / 12 = 0.00266666666666667
n = number of months = 20 * 12 = 240
Substituting the values into equation (1), we have:
FV = $235.15 * (((1 + 0.00266666666666667)^240 – 1) / 0.00266666666666667) = $78,910.41
The amount planned to be withdrawn on monthly basis can be calculated using the formula for calculating the present value (PV) of an ordinary annuity as follows:
P = PV / ((1 - (1 / (1 + r))^n) / r) …………………………………. (2)
Where;
P = Monthly withdrawal or payment = ?
PV = Present value = FV calculated above = $78,910.41
r = Monthly interest rate = 3.2% / 12 = 0.00266666666666667
n = number of months = 10 * 12 = 120
Substitute the values into equation (2), we have:
P = $78,910.41PV / ((1 - (1 / (1 + 0.00266666666666667))^120) / 0.00266666666666667) = $769.27
Therefore, the amount that can be withdrawn each month for 10 years is $769.27.
Learn more about the present value of an ordinary annuity here: https://brainly.com/question/17112302.
#SPJ4