Respuesta :

Answer:

30.96

Step-by-step explanation:

First you must find the diameter of the circle which is 12

Then you must use the formula A=πr²

So it should be = to A = 3.14 ×144 which is 30.96

[tex] \huge \tt \color{pink}{A}\color{blue}{n}\color{red}{s}\color{green}{w}\color{grey}{e}\color{purple}{r }[/tex]

[tex] \large\underline{ \boxed{ \sf{✰\:Notes }}}[/tex]

★ Concept ★

  • ➣ A square with sides 12m
  • ➣then a circle in between
  • ➣nd it's diameter is 12m bcz of side of square is equal to radius
  • ➣soo here things we to find is the area of circle and then square then by subtracting their will give us the area of shaded part in image

[tex] \rule{70mm}{2.9pt}[/tex]

[tex] \large\underline{ \boxed{ \sf{✰\: formule\: used\:✰ }}}[/tex]

[tex]{ \boxed{✟\underline{ \boxed{ \sf{\: Area \: of \: circle = \pi {r}^{2} \: }}}✟}}[/tex]

[tex]{ \boxed{✟\underline{ \boxed{ \sf{\: Area \: of \: square = side \times side \: or \: ( {s}^{2}) \: }}}✟}}[/tex]

[tex] \rule{70mm}{2.9pt}[/tex]

1st taking out the the area of circle

  • ➣ value of pi = 3.14
  • ➣ diameter = 12m (have to find radius we know that radius is half of diameter) which is

[tex] \qquad \rm{➛ \: radius(r) = \frac{12}{2} } \\ \\ \qquad \rm{➛ \: radius(r) = \frac{ \cancel{12}}{ \cancel2} } \\ \\ \qquad \rm{➛ \: radius(r) =6m}[/tex]

  • ★ Hence radius of circle is 6m

★ let's substitute values now ★

[tex] \\ \qquad \rm{➛Area \: of \: circle = 3.14 \times {6}^{2} \:} \\ \\ \qquad \rm{➛Area \: of \: circle = \:3.14 \times 36} \\ \\ \qquad \rm{➛Area \: of \: circle = \:113.04 {m}^{2} }[/tex]

[tex] \rule{70mm}{2.9pt}[/tex]

now finding the area of square

  • ➣ here two given side are 12m

★ let's substitute values now ★

[tex]\\ \qquad \rm{➛Area \: of \:square = 12×12} \\ \\ \\ \qquad \rm{➛Area \: of \:square = 144 {m}^{2} }[/tex]

✞ Now according to given ques we have to find area of shaded part soo let's solve ! ✞

[tex]\\ \rm{➛Area \: of \:shaded \: part = \: area \: of \: circle - area \: of \: squre} \\ [/tex]

Let's substitute value

[tex]\\ \rm{➛Area \: of \:shaded \: part =113.04-144} \\ \\ \qquad \rm{➛Area \: of \:shaded \: part =30.96 {m}^{2} }[/tex]

[tex] \rule{70mm}{2.9pt}[/tex]

★ Hence area of shaded part =

[tex]{ \boxed{✜\underline{ \boxed{ \sf{ \: 30.96 {m}^{2} \green✓\: }}}✜}}[/tex]

★ note here we neglect minus (-)

[tex] \rule{70mm}{2.9pt}[/tex]

Hope it helps !

ACCESS MORE