The vertices of a feasible region are (14, 2), (0, 9), (6, 8), and (10, 3). what is the maximum value of the objective function p if p = 180x 250y? 2,940 3,020 3,080 3,250

Respuesta :

The maximum value of the objective function p if p = 180x + 250y is 3020

How to determine the maximum value?

The coordinates of the feasible region are given as;

(14, 2), (0, 9), (6, 8), and (10, 3)

The objective function is given as:

P = 180x + 250y

Substitute the coordinates of the feasible region in the above function

P = 180 * 14 + 250 * 2 =3020

P = 180 * 0 + 250 * 9 = 2250

P = 180 * 6 + 250 * 8 = 3080

P = 180 * 10 + 250 * 3 = 2550

The maximum value in the above computation is:

P = 180 * 14 + 250 * 2 =3020

Hence, the maximum value of the objective function p if p = 180x + 250y is 3020

Read more about objective functions at:

https://brainly.com/question/16826001

#SPJ4

ACCESS MORE