Respuesta :
Each successive term is -5 times the previous one, so the underlying sequence is
[tex]a_n=-5a_{n-1}=(-5)^2a_{n-2}=(-5)^3a_{n-3}=\cdots=(-5)^{n-1}a_1=8(-5)^{n-1}[/tex]
The sum can then be written as
[tex]8-40+200-1000+\cdots=\displaystyle\sum_{n=1}^\infty8(-5)^{n-1}[/tex]
[tex]a_n=-5a_{n-1}=(-5)^2a_{n-2}=(-5)^3a_{n-3}=\cdots=(-5)^{n-1}a_1=8(-5)^{n-1}[/tex]
The sum can then be written as
[tex]8-40+200-1000+\cdots=\displaystyle\sum_{n=1}^\infty8(-5)^{n-1}[/tex]
Answer:
Step-by-step explanation:
From the given information, the pattern is as:
8 - 40 + 200 - 1000 + ...
We can see that the successive term is -5 times the previous one, therefore, using this, we can write it in the form of sequence:
[tex]a_{n}=-5a_{n-1}=(-5)^2a_{n-2}=(-5)^3a_{n-3}=....=(-5)^{n-1}a_{1}=8(-5)^{n-1}[/tex].
Therefore, the sum can be written as:
8 - 40 + 200 - 1000 + ...=[tex]\sum_{n=1}^{\infty}8(-5)^{n-1}[/tex]