Respuesta :

Answer:

[tex]D.\:\:\:\:\:\sec^4\theta[/tex]

Step-by-step explanation:

  • [tex]\frac{1+\tan^2\theta}{\cos^2\theta}[/tex]

  • [tex]=\frac{\sec^2\theta}{\cos^2\theta}\:\:\:(\because 1+\tan^2\theta=\sec^2\theta)[/tex]

  • [tex]=\sec^2\theta.\frac{1}{\cos^2\theta}[/tex]

  • [tex]{=\sec^2\theta.{\sec^2\theta}}\:\:\:(\because\frac{1}{\cos^2\theta}=\sec^2\theta)[/tex]

  • [tex]=\sec^4\theta[/tex]

Hope it helps you in your learning process.

Answer:

D

Step-by-step explanation:

using the identities

1 + tan²Θ = sec²Θ and cosΘ = [tex]\frac{1}{sec0}[/tex] , then

[tex]\frac{1+tan^20}{cos^20}[/tex]

= [tex]\frac{sec^20}{\frac{1}{sec^20} }[/tex]

= sec²Θ × sec²Θ

= [tex]sec^{4}[/tex]Θ

ACCESS MORE
EDU ACCESS