Respuesta :

Partitioning the interval [tex][6,11][/tex] into [tex]n[/tex] equally-spaced subintervals gives [tex]n[/tex] rectangles of width [tex]\Delta x=\dfrac{11-6}n=\dfrac5n[/tex] and of heights determined by the right endpoints of each subinterval.

If [tex]a=x_1=6[/tex], then [tex]x_2=6+\dfrac5n[/tex], [tex]x_3=6+2\dfrac5n[/tex], and so on, up to [tex]b=x_{n+1}=6+n\dfrac5n=11[/tex]. Because we're using the right endpoints, the approximation will consider [tex]x_2,\ldots,x_{n+1}[/tex]

The definite integral is then approximated by

[tex]\displaystyle\int_6^{11}(1-5x)\,\mathrm dx\approx\sum_{i=2}^{n+1}f(x_i)\Delta x=\sum_{i=2}^{n+1}\left(1-\left(6+(i-1)\dfrac5n\right)\dfrac5n[/tex]

You have

[tex]\displaystyle\sum_{i=2}^{n+1}\left(1-5\left(6+(i-1)\dfrac5n\right)\dfrac5n=\sum_{i=2}^{n+1}\left(-29-\dfrac{25}n(i-1)\right)\dfrac5n[/tex]
[tex]=\displaystyle-{145}n\sum_{i=2}^{n+1}1-\dfrac{125}{n^2}\sum_{i=2}^{n+1}(i-1)[/tex]
[tex]=-145-\dfrac{125(n^2+n)}{2n^2}[/tex]
[tex]=-\dfrac{145}2-\dfrac{125}{2n}[/tex]

To check that this is correct, let's make sure the sum converges to the exact value of the definite integral. As [tex]n\to\infty[/tex], you have the sum converging to [tex]-\dfrac{145}2[/tex].

Meanwhile,

[tex]\int_6^{11}(1-5x)\,\mathrm dx=\left[x-\dfrac52x^2\right]_{x=6}^{x=11}=-\dfrac{415}2[/tex]

so we're done.
ACCESS MORE