Respuesta :
x = 7/4
y = 3/2
z = -5/4
Step 1: Multiply first equation by
y = 3/2
z = -5/4
Step 1: Multiply first equation by
−3 and add the result to the third equation. The result is:
x+ 2 y+ 3 y− 8 y− z− 2 z+ 8 z = 6 = 7 = −22Step 2: Multiply second equation by 4 and add the result to the third equation. The result is:
x+ 2 y+ 3 y+ 4 y− z− 2 z = 6 = 7 = 6Step 3: solve for y.
4 yy=6=32Step 4: solve for z.
3z−2z3⋅32−2zz=7=7=−54Step 5: solve for x by substituting y=32 and z=−54 into the first equation.
Answer:x=[tex]\frac{7}{4}[/tex]
y=[tex]\frac{3}{2}[/tex]
z=[tex]-\frac{5}{4}[/tex]
Step-by-step explanation:
The given equations are
x + 2y - 6 = z (1)
3y - 2z =7 or 3y=2z+7 (2)
4 + 3x = 2y - 5z (3)
Equation 3 can be rewritten as 3x-2y =-5z-4 (4)
Equation 1 can be rewritten as x+2y=z+6 (5)
Adding the two equations we have: ----------------
4x =-4z+2
or x= -z+0.5 (6)
Multiplying equation (5 ) by 3 and equation (2) by 2 so that y can be eliminated we have:
3x+6y=3z+18
6y = 4z+14
................................
3x = -z+4 ( subtracting the two equations)
substituting x value from equation (6) we have:
3(-z+0.5) =-z+4
Or,-3z+1.5=-z+4
-3z+z=4-1.5
-2z=2.5
z=-1.25 Or z= - [tex]\frac{5}{4}[/tex]
Substituting z value in equation (6)
3x=-(-1.25) +4
3x=5.25
x= 1.75
Or x=[tex]\frac{7}{4}[/tex]
Substituting z value in equation (2) and solving for y we have :
3y-2(-1.25)=7
or 3y=7-2.5
y=1.5
Or y=[tex]\frac{3}{2}[/tex]
The solutions to the equaitons are :
x=[tex]\frac{7}{4}[/tex]
y=[tex]\frac{3}{2}[/tex]
z=[tex]-\frac{5}{4}[/tex]