[tex]f(x,y)=9e^y(y^2-x^2)[/tex]
[tex]\nabla f=\left\langle-18xe^y,9ye^y(2+y)\right\rangle[/tex]
Critical points occur where the gradient is zero. This is guaranteed whenever [tex]x=0[/tex] and either [tex]y=0[/tex] or [tex]y=-2[/tex].
The Hessian matrix for this function looks like
[tex]H(x,y)=\begin{bmatrix}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{bmatrix}=\begin{bmatrix}-18e^y&-18xe^y\\-18xe^y&9e^y(2-x^2+4y+y^2)\end{bmatrix}[/tex]
and has determinant
[tex]|H(x,y)|=-162e^{2y}(2+x^2+4y+y^2)[/tex]
Maxima occur whenever the determinant is positive and [tex]f_{xx}<0[/tex]. Minima occur whenever both the determinant and [tex]f_{xx}[/tex] are positive. Saddle points occur whenever the determinant is negative.
At [tex](0,0)[/tex], you have a saddle point since the determinant reduces to -324, so [tex](0,0,0)[/tex] is the saddle point.
At [tex](0,-2)[/tex], the determinant is [tex]\dfrac{324}{e^4}>0[/tex] and [tex]f_{xx}(0,-2)=-\dfrac{18}{e^2}<0[/tex], so [tex]\left(0,-2,\dfrac{36}{e^2}\right)[/tex] is a local maximum.
No other critical points remain, so you're done.