Respuesta :
Answer:
[tex]\frac{10x^2+3}{y^2+4}[/tex]
Step-by-step explanation:
When adding rational numbers, if the denominator is the same you simply keep the denominator (bottom of fraction) as it is and apply the operation given to the numerator ( top of fraction )
So we have [tex]\frac{6x^2+5}{y^2+4} +\frac{4x^2-2}{y^2+4} =\frac{(6x^2+5)+(4x^2-2)}{y^2+4}[/tex]
==> remove parenthesis and apply signs
[tex]\frac{x^2+5+4x^2-2}{y^2+4}[/tex]
==> simplify numerator by combining like terms
[tex]\frac{10x^2+3}{y^2+4}[/tex]
and we are done!
Note:
like terms are terms with the same variable and exponent
An example of like terms are 6x^7 and 3x^7 as they have x as a variable and a power of 7
The like terms being combined here were (6x² and 4x²) and (5 and -2)
Answer:
[tex]\frac{10x^{2} +3}{y^{2}+4 }[/tex]
Step-by-step explanation:
[tex]\frac{6x^{2} +5}{y^{2}+4 } +\frac{4x^{2} -2}{y^{2}+4 }[/tex]
make the common denominator
[tex]\frac{6x^{2} +5+4x-2}{y^{2}+4 }[/tex]
combone the like terms
[tex]\frac{10x^{2} +5-2}{y^{2}+4 }[/tex]
subtract numbers
[tex]\frac{10x^{2} +3}{y^{2}+4 }[/tex]