Respuesta :
[tex] \huge \tt \color{cyan}{➢}\color{pink}{A}\color{blue}{n}\color{red}{s}\color{green}{w}\color{grey}{e}\color{purple}{r }\color{cyan}{➢}[/tex]
[tex] \large\underline{ \boxed{ \sf{✰\:Important\: point's }}}[/tex]
- a polynomial equation of the second degree is said to be as quadratic equation.
- quadratic:-a function, of the form y=ax²+bx+c.
- Standard form of quadratic equation is ax²- bx+c=0
- where a≠0
[tex]\rule{70mm}{2.9pt}[/tex]
[tex] \large\underline{ \boxed{ \sf{✰\: Let's\: solve }}}[/tex]
[tex] \purple{ \sf{⇒Given \:function}}[/tex]
⇒ y = -2(x-5)²-4
- now 1st we have to solve (x-5)² by using algebraic identify (a-b)²= a²+b²-2ab here a=x nd b = -5
- (x-5)²
- x²-10x+25
- Now
⇒y = -2(x²-10x+25)-4
- distribution of 2 with bracket
⇒ y= -2x²+20x-50-4
⇒ y= -2x²+20x-54
Hence option A (-2x²+20x-54) is right ans.....
[tex]\rule{70mm}{2.9pt}[/tex]
[tex] \red{ \underline{\underline{ \boxed{ \tt{✰ \: Option \: A \: ✓}}}}}[/tex]
Hope it helps !