Respuesta :

Answer:

y = - 4

Step-by-step explanation:

[tex]\cfrac{2}{5}\left(10y-5\right)-2y=-10[/tex] (Multiply)

[tex]\cfrac{2\left(10y-5\right)}{5}-2y=-10[/tex]

[tex]\cfrac{2\left(10y-5\right)}{5}\times \:5-2y\times \:5=-10\times \:5[/tex]

[tex]2\left(10y-5\right)-10y=-50[/tex] (Expand)

[tex]10y-10=-50[/tex]

[tex]10y-10+10=-50+10[/tex] ( Add 10)

[tex]10y=-40[/tex] (Simplify)

[tex]\cfrac{10y}{10}=\cfrac{-40}{10}[/tex] (Divide by 10)

[tex]y=-4[/tex]

Answer:

[tex]y=-4[/tex]

Step-by-step explanation:

Given equation:

[tex]\dfrac{2}{5}(10y-5)-2y=-10[/tex]

Expand the brackets:

[tex]\implies \dfrac{2}{5}(10y)-\dfrac{2}{5}(5)-2y=-10[/tex]

[tex]\implies \dfrac{2 \cdot 10}{5}y-\dfrac{2 \cdot 5}{5}-2y=-10[/tex]

[tex]\implies \dfrac{20}{5}y-\dfrac{10}{5}-2y=-10[/tex]

[tex]\implies 4y-2-2y=-10[/tex]

Collect like terms:

[tex]\implies 4y-2y-2=-10[/tex]

Combine like terms:

[tex]\implies 2y-2=-10[/tex]

Add 2 to both sides:

[tex]\implies 2y-2+2=-10+2[/tex]

[tex]\implies 2y=-8[/tex]

Divide both sides by 2:

[tex]\implies \dfrac{2y}{2}=\dfrac{-8}{2}[/tex]

[tex]\implies y=-4[/tex]