Respuesta :
Answer:
y = - 4
Step-by-step explanation:
[tex]\cfrac{2}{5}\left(10y-5\right)-2y=-10[/tex] (Multiply)
[tex]\cfrac{2\left(10y-5\right)}{5}-2y=-10[/tex]
[tex]\cfrac{2\left(10y-5\right)}{5}\times \:5-2y\times \:5=-10\times \:5[/tex]
[tex]2\left(10y-5\right)-10y=-50[/tex] (Expand)
[tex]10y-10=-50[/tex]
[tex]10y-10+10=-50+10[/tex] ( Add 10)
[tex]10y=-40[/tex] (Simplify)
[tex]\cfrac{10y}{10}=\cfrac{-40}{10}[/tex] (Divide by 10)
[tex]y=-4[/tex]
Answer:
[tex]y=-4[/tex]
Step-by-step explanation:
Given equation:
[tex]\dfrac{2}{5}(10y-5)-2y=-10[/tex]
Expand the brackets:
[tex]\implies \dfrac{2}{5}(10y)-\dfrac{2}{5}(5)-2y=-10[/tex]
[tex]\implies \dfrac{2 \cdot 10}{5}y-\dfrac{2 \cdot 5}{5}-2y=-10[/tex]
[tex]\implies \dfrac{20}{5}y-\dfrac{10}{5}-2y=-10[/tex]
[tex]\implies 4y-2-2y=-10[/tex]
Collect like terms:
[tex]\implies 4y-2y-2=-10[/tex]
Combine like terms:
[tex]\implies 2y-2=-10[/tex]
Add 2 to both sides:
[tex]\implies 2y-2+2=-10+2[/tex]
[tex]\implies 2y=-8[/tex]
Divide both sides by 2:
[tex]\implies \dfrac{2y}{2}=\dfrac{-8}{2}[/tex]
[tex]\implies y=-4[/tex]