Respuesta :

Answer:

AB = [tex]\sqrt{20}[/tex]

Step-by-step explanation:

calculate the distance using the distance formula

d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = B (3, 2 ) and (x₂, y₂ ) = A (7, 4 )

AB = [tex]\sqrt{(7-3)^2+(4-2)^2}[/tex]

     = [tex]\sqrt{4^2+2^2}[/tex]

     = [tex]\sqrt{16+4}[/tex]

     = [tex]\sqrt{20}[/tex]

     ≈ 4.47 ( to 2 dec. places )

Answer:

[tex]distance = \sqrt{(3 - 7) ^{2} } + (2 - 4) ^{2} \\ = \: \: \sqrt{16} + 4 \\ \\ = \: \: \: \: 2 \sqrt{5} [/tex]