The radius of Convergence for the function [tex]\frac{\[(-1)^{n} \; x^{n} }{\sqrt[3]{n} }[/tex] is 1.
The radius of the largest disk at the center of the series in which the series converges.
Perform the ratio test for absolute convergence, which says
if [tex]\lim_{n \to \infty} \frac{a_{n}}{a_{n+1}}[/tex] =L
Then,
1) if L<1, the series is absolutely convergent
2) If L>1, the series is divergent
3) If L= 1, apply a different test.
Now, Applying test
[tex]a_{n+1}[/tex] =[tex]\frac{(-1)^{{n+1} } \; x^{n+1}}{\sqrt[3]{n+1} }[/tex]
So,
[tex]\lim_{n \to \infty} \frac{a_{n+1}}{a_{n}}[/tex] = [tex]\lim_{n \to \infty}|\frac{ (-1)^{{n+1} } \; x^{n+1}/\sqrt[3]{n+1} }{ (-1)^{n} \; x^{n} /\sqrt[3]{n} } |[/tex]
= [tex]\lim_{n \to \infty}|\frac{ (-1)^{{n+1} } \; x^{n+1}\sqrt[3]{n}}{ (-1)^{n} \; x^{n} \sqrt[3]{n+1} } |[/tex]
= [tex]\lim_{n \to \infty}|\frac{ (-1) \; x^{n}\sqrt[3]{n}}{ \sqrt[3]{n+1} } |[/tex]
= [tex]\lim_{n \to \infty}\sqrt[3]{\frac{1}{1+\frac{1}{n}} } } |x|[/tex]
Applying the limit n→∞,
= 1 x |x|
= |x|
By ratio test, the given series will be convergent if |x|< 1.
So, the radius of Convergence = 1
Learn more about radius of Convergence here:
https://brainly.com/question/18763238
#SPJ4