Respuesta :

gh8186

Answer:

Option #4: [tex]4\left(x+8\right)-10\ge 42[/tex]

Step-by-step explanation:

[tex]4\left(x+8\right)-10\ge 42[/tex]

x ≥ 5

Answer:

4th option

Step-by-step explanation:

the inequality shows x ≥ 5

solving the inequalities

- 7(3x - 7) + 21 ≥ 50

- 21x + 49 + 21 ≥ 50

- 21x + 70 ≥ 50 ( subtract 70 from both sides )

- 21x ≥ - 20

divide both sides by - 21 reversing the symbol as a result of dividing by a negative quantity , then

x ≤ [tex]\frac{20}{21}[/tex] ← not the required solution

--------------------------------------------------

- 4(- x + 8) - 10 ≤ 8

4x - 32 - 10 ≤ 8

4x - 42 ≤ 8 ( add 42 to both sides )

4x ≤ 50 ( divide both sides by 4 )

x ≤ 12.5 ← not the required solution

--------------------------------------------------

- 7(3x - 7) + 21x ≥ - 50

- 21x + 49 + 21x ≥ - 50 ( subtract 49 from both sides )

0 ≥ - 99 ← not the required solution

-----------------------------------------------------

4(x + 8) - 10 ≥ 42

4x + 32 - 10 ≥ 42

4x + 22 ≥ 42 ( subtract 22 from both sides )

4x ≥ 20 ( divide both sides by 4 )

x ≥ 5 ← Required solution