Respuesta :
Answer:
[tex]\sf \boxed{\bold{x=1}}[/tex]
Explanation:
[tex]\rightarrow \sf 7 log_9 (x + 8) = 7[/tex]
divide both sides by 7
[tex]\rightarrow \sf \dfrac{7\log _9\left(x+8\right)}{7}=\dfrac{7}{7}[/tex]
simplify the following
[tex]\sf \rightarrow \log _9\left(x+8\right)=1[/tex]
apply log rules [tex]\underline{The \ rule}: \ \bold{log_{b} (a)= c} \ \ \Longrightarrow \sf a = b^c[/tex]
[tex]\sf \rightarrow x+8 = 9^1[/tex]
simplify
[tex]\sf \rightarrow x+8=9[/tex]
subtract both sides by 8
[tex]\sf \rightarrow x=1[/tex]
[tex]\\ \rm\Rrightarrow 7log_9(x+8)=7[/tex]
[tex]\\ \rm\Rrightarrow log_9(x+8)=1[/tex]
[tex]\\ \rm\Rrightarrow x+8=9^1[/tex]
- a^1=a
[tex]\\ \rm\Rrightarrow x+8=9[/tex]
[tex]\\ \rm\Rrightarrow x=9-8[/tex]
[tex]\\ \rm\Rrightarrow x=1[/tex]