Respuesta :

Answer:

B  x = 3, y= 3

Step-by-step explanation:

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Given:

  • [tex]\theta[/tex] = 45°
  • O = [tex]x[/tex]
  • A = [tex]y[/tex]
  • H = [tex]3\sqrt{2}[/tex]

[tex]\implies \sin(45^{\circ})=\dfrac{x}{3\sqrt{2}}[/tex]

[tex]\implies x=3\sqrt{2}\sin(45^{\circ})[/tex]

[tex]\implies x=3\sqrt{2} \cdot \dfrac{\sqrt{2}}{2}[/tex]

[tex]\implies x=\dfrac{3\sqrt{2} \sqrt{2}}{2}[/tex]

[tex]\implies x=\dfrac{3 \cdot 2}{2}=3[/tex]

[tex]\implies \cos(45^{\circ})=\dfrac{y}{3\sqrt{2}}[/tex]

[tex]\implies y=3\sqrt{2}\cos(45^{\circ})[/tex]

[tex]\implies y=3\sqrt{2} \cdot \dfrac{\sqrt{2}}{2}[/tex]

[tex]\implies y=\dfrac{3\sqrt{2} \sqrt{2}}{2}[/tex]

[tex]\implies y=\dfrac{3 \cdot 2}{2}=3[/tex]