Respuesta :
Answer:
- 50.24 inches
[tex] \: [/tex]
Step-by-step explanation:
It is given that, the radius of a circle is 8 inches and we are to find the circumference of the circle.
[tex] \: [/tex]
To find the circumference of the circle we must know this formula first :
[tex]\\{ \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{ \: Circumference_{(circle)}= 2 \pi r}}}}}} \: \: \bigstar \\ \\[/tex]
Where
- r is the radius of the circle.
- We'll take the value of π as 3.14
Now substituting the values in the formula :
[tex]\\{ \longrightarrow \qquad{ {{\sf{{ \: Circumference_{(circle)}= 2 \times 3.14 \times 8}}}}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ {{\sf{{ \: Circumference_{(circle)}= 3.14 \times 16}}}}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ { \pmb{\frak{{ \: Circumference_{(circle)}= 50.24}}}}}} \: \: \\ \\[/tex]
Therefore,
- The circumference of the circle is 50.24 inches
Answer:
C = 50.24 in
Step-by-step explanation:
Given that,
→ Radius (r) = 8 in
Formula we use,
→ 2πr
The circumference of the circle will be,
→ 2πr
→ 2 × 3.14 × 8
→ 6.28 × 8
→ [ 50.24 in ]
Hence, the circumference is 50.24 in.