Answer:
The correct option is C. The function [tex]f(x)=\frac{5}{4}(\frac{4}{5})^x[/tex] is a stretch of an exponential decay function.
Step-by-step explanation:
The general form of an exponential function is
[tex]f(x)=ab^x[/tex]
where, a is the initial value and b is the growth factor.
If b<1, then it represents a decay function and if b>1, then it represents a growth function.
Let k be a stretch and compression factor.
[tex]g(x)=kf(x)[/tex]
If k<1, then it represents vertical compression and if k>1, then it represents vertical stretch.
In third function
[tex]f(x)=\frac{5}{4}(\frac{4}{5})^x[/tex]
[tex]k > 1[/tex]
[tex]b < 1[/tex]
Therefore the function [tex]f(x)=\frac{5}{4}(\frac{4}{5})^x[/tex] is a stretch of an exponential decay function.